Dihybrid and 10.3 Gene Linkage and Polyploidy

A. Dihybrid cross

1. Looking at 2 traits
simultaneously
2. Parents: hybrid both
traits
3. Ex. TtRr x TtRr

Pheno. ratio is 9:3:3:1

B. Genetic recombination

1.Can calculate the possible combos using 2^{n}
2. 2 = alleles (mom \& dad)
3. $\mathrm{n}=$ number of chrom's
4. Fruit flies $=2^{8}$

(256 combos for 1 gamete)

Now cross egg x sperm

$256 \times 256=65536$ possible offspring combos

5. Humans $=2^{23}$

(8,388,608 combos)

Now cross egg x sperm

8million x 8million $=$ 7×10^{13} combos

C. Gene Linkage

1. Genes close to each other on a chrom. have higher chance of being inherited together
2. *crossing over
3. Maps of chrom's indicate \% of chance of crossover as distance

Practice: Making a map

$$
\text { If: } A B=3, A C=1, A D=4, B C=2,
$$

$$
B D=7, C D=5
$$

Then: What does the chromosome
map look like?

Look first at a few of the data points:

$$
A B=3 \quad A C=1 \quad B C=2
$$

Draw AB first: A---B

Then consider where C can go to

 make the next 2 equations work:$$
A-C--B
$$

Answer:

D----A-C--B
C. Polyploidy: many sets of chr. 1. Most species = diploid (2n) 2.Rarely in animals (lethal) but 1 in 3 flowering plants 3.Hexaploid ($6 n$) bread wheat and oats
4.Octoploid (8n) strawberries 5.Increases vigor and size

Haploid (N)

Diploid (2N)

Triplaid (3N)

Tetraploid [4N]

